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ON THE STABILITY OF INHOMOGENEOUSLY AGEING VISCOELASTIC PLATES"

A.D. DROZDOV and V.B. KOLMANOVSKII

A method of investigation is proposed and conditions are set up for the stability
of viscoelastic inhomogeneously ageing prlatesof arbitrary shape with a

common creep kernel. The form of the stability conditions is found as a
function of the surface forces. The stability problem is examined
numerically in a finite time interval. The paper touches on the investiga-

tions in /1—3/. (See the bibliography of research on the stability of
homogeneous viscoelastic systems in /1~5/, for example.)

1. Formulation of the problem. we consider a viscoelastic inhomogeneously ageing
plate of constant thickness h. We introduce a Cartesian Ozz,2; coordinate system whose Oz,
axis is perpendicular to the middle plane while the Oz 2, plane agrees with the middle plane
in the undeformed state. The plate is a set of points {z = (2, ) =D x (—h/2 L z; < H/2)),
where D is the domain in the Oz, plane. The domain D has a piecewise-smooth boundary
T =4D.

At the time P = Q a =t=f1nqzm; external load consis o
of ihtensity —q(z) applied to the face zy =h/2, and the surfa
0), applied to the part of the plate edge I X[—A/2,4/2],Ty T, is applied to the undeformed
plate. The growth of a plate element 7 with respect to the plate element z =0 is p (z),where
the function p (z) is piecewise continuous and bounded. The displacement vector in the plane
of the plate is denoted by (4° u'), and the displacement (deflection) of points of the middle
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plane in the direction of the Oz, axis is denoted by u. The values of the vector (&%, u,?)

4
Tl

tﬂ

for points of the middle plane are denoted by (u4, u,). There are no displacements in the
plane of the plate on part of the plate edges T, X [—A/2, R/2], T, =T\ I}
°@)=0,z=T,, i=1, 2 (1.1)

The plate edge is clamped with respect to deflection, i.e., when the following Kirchhoff
hypotheses are satisfied:
u(@)=0, up(@) =0, z=T (1.2)

Here n is the unit vector of the external normal to the curve [ in the plane of the plate
and denoted by f,; = df/dz,.
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that from the inequality |g(z)|<C8 there results the estimate

2. Governing equations. ©Let o°=(0,/), &° = (e,"), i, j =1, 2, 3 denote the stress and
strain tensors at the time ¢> 0. According to the model of inhomogeneously ageing bodies,
the tensor components ¢° and & are connected by the relationships

5u‘°=‘é'(1 + K)[(1 + v)o;° — vdy0n°) 2.1
o =gy U —R) e~ =55 5i:‘5u°]

Here E is the constant elastically-instantaneous strain modulus, v is the constant
Poisson's ratio, summation is over identical subscripts, §;; is the Kronecker delta, I is the
unit operator, K is the creep operator, R is the relaxation operator (k (¢, T) is the creep
kernel, and r (¢, 5) is the relaxation kernel)

Ko, °

ij

k(t+p(@), T+pla)oydt

Re 7 (¢ +p(2), T+ p@)esdT

O
ij

Og/;_ =€/a~

I —R=(+ K"

It is assumed that the functions k(¢ <), r (¢, ©) are weakly singular, the Kirchhoff
hypotheses are satisfied /6/, the elongations and shears are small compared with unity, and

£ mwatatriong are small compared with the eloncaati
the squazres of the rotatioms are small compared with the elongation
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strain tensor components &;°, i, j =1, 2, have the form

SUO = E&;j — z,u,ij (2.2)

Here &;; are the strain tensor components in the middle plane. Moreover, it is assumed that
a function r, (t,T) exists such that for any z&D

0<rit+p@) t+ep@ < 1), 0T (2.3)

t

|r1}==sup; Srl trdr<1 (2.4)

o
The stresses 0;3°, i = 1, 2, 3 can be neglected in (2.1) in the generalized plane state of
stress. BHence, and from (2.1) it follows that
oun’=E (1 — 3 (I — R) (ens® + v&22®), (2.5)
o1’=E(1 +v)1 (] — R)eys°
To*==E (1 — v?) 1 (I — R) (vey® + £22°)
Let 0;; and M,; denote the average forces and moments in the plate per unit area of
cross-section perpendicular to the middle plane
. h/z . . h/2
Oy = § 0 dzs, M= S 6’23 dzs (2.6)
~h/2 —hi2

It is clear that &g; (¢, z) and u; (¢, z) are the values of the strain g;;° and the displace-
ment u;° averaged over the plate thickness. The averaged quantities are functions of the
variables t and z, on which the explicit dependence is sometimes either not indicated or else
indicated only for one of them.

Substituting (2.2), (2.5) for ¢g;°, 6;;° into the relationships (2.6), we obtain
On =E(1 —v' I —R) (g + vey) 2.7
O =E({ 4+ —R)ey,
O = E (1 —v 1 (I —R) (vey, + &)
My = —ER*[12 (1 — )V (I — R) (1,5 + VU,g0) (2.8)
Myp=—ErRPM2(1 4+v'{{ —~R)u,,
My = —ER*[12 (1 —v)]1 (I — R) (v, + Uisg)

Usting /7/, we write the plate equilibrium equations in the bent state in the form

G131+ Opa,s =0, Oyy,3 + Ggg,5 =0 2.9)
My1+ My, g ~035 =0, Myg,; + Mgg,3 —0gy =0 (2.10)
G131 + Om,2 + 9/h =+ (011%,1),1 + (0138, 5),1 + (0138,1), 3 + (O2sR2,2),0 =0

To eliminate the forces 0y, 0y from (2.10), we differentiate the first equation in
(2.10) with respect to z,, the second with respect to z,, and add to the third equation.
Substituting their expressions (2.8) in place of the moments M;; in the result, we arrive at
the governing equation for the displacement u (t, x)

[(I—R)y@u+vu)ln+20—v[I—R)u 5] 1+ (2.11)
[ — Ry (vu, 11,48 20)].2. = q/B + 4B [(on¥, 1)1 +
(0128,5),1 4 (O222,1),5 -+ (O22lt 2}, 5]y B=ER%[12 (1 — +?)]

Here B is the cylindrical stiffness of the plate and the stresses 0;; are determined by
(2.7).

3. General stability conditions. we will derive the stability conditions by
considering the functions a;; as given. We will estimate the displacement u as a function of
the force o0;; by using the notation u,? = (u,)%.

It follows from (1.2) that

v=0u,=0u,=0,2=T (3.1)
We multiply (2.11) by u(t z) and integrate over the domain D. Taking account of the
Green's formula (/8/, p.69) and the boundary conditions (3.1), we obtain

S [ —R)(uu+vin)+201—vu (I —R)u,,+ (3.2
b
u,00({ — R)(va,y +u,)]dr =

%" S qu dz —lﬂ‘- S (Guu?l + 20, oll 3U o -+ Uzzu_’g) dz
D D
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We introduce the functions

fllty= g("?x +alh)tdr, fi2(t)= Su“ dx
D D

H () = S (01?4 2013% + 0as) dz
D

Using Green's formula and the boundary conditions (3.1), we conclude that for any v

)= S @l + 20y + uly) dz = S(".u +un)fdr=
b D

4 —v) §@hn + 208 + 0ty dz +v §@u+um)dz
bs] D

We now represent (3.2) in the form

ft)= —3—§qu dz+ (L — ) { @,uR, 0+ 20 Ba s + (3.3)
D
u,nflu u)dz + v § (Un+u,m)R@y+u,ds—

-’-Bl— S (G;;u?l -+ 20138142, 5 + onu‘f,) dea=L+ A —v]+vI+1,
D

It is clear that

1LI<Ialh®. Jolr =5 ¢@de

D

Furthermore, using the Cauchy inequality, we have
4

)<< gh(t, t)dt S(l a4t 2)u, (T 2)| + 2|31, (2 1) X (3.4)
s B
¢

2,30 (%, )| + 8,00 (6 D)2, (v, 2) dz < F O S a8, 1) F (1) b
Similarly ’

t

Is|<f@$r@of de (3.5)

0
Like (3.4) we have

14| <%‘§ (012® + 20122 + 0¥ (0% + uly) dz < -;— H)fo (1)

Hence, and from (3.3) it follows that
t
PO<IgA®+10{nE0i@d + 4 BoH0 (3.6)

o
Let A, and A denote the greatest positive numbers for which the inequalities

2O <M fo () <A (@) (3.1
hold for all functions « (z)3=0 satisfying the boundary conditions (3.1).
The existence of such A, and A is proved in Sect.S.
Because of (3.7), the following inequality results from estimate (3.6):

=R H)MVEHOI< IO+ 4" e 3.8)
| H | = sup>°H (t), || f () | = suposistf (¥)
We now assume that
TH| <Pt —|n ) 3.9)
On the basis of (3.8) and (3.9) we have | f(#)|<{c,|g]- Here and henceforth ¢; > 0 are
certain constants. Because of (3.7) and the known results (/9/, p.84, inequality (8.4)), we
have |u(t,2) 1 <e]f@®l
Therefore, we have
Theorem 3.1. Let the assumptions formulated in Sect.l and the estimates (2.3), (2.4),
(3.9) be satisfied. Then the plate is stable.
Using the method to prove Theorem 3.1, other stability conditions can be obtained as in
/3/; for instance, the following theorem holds:

Theorem 3.2. We assume that the relaxation kernel r satisfies inequality (2.3), where
|r | <<oo. Furthermore, let there be a function r,({f, 1), |7 | <C1 such that uniformly in ¢t =T
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t

limpoe S Supeep|r(t4-p(z),t+p@E)—ro(t, 1)|dv =0
T‘

Then the plate is stable if |H|<PMT(1 —|r, ).

4. Specific stability conditions. The general stability conditions set up in
Theorem 3.1 and 3.2 depend on the stresses in the plate by means of the function H. In addition,
stability conditions formulated directly in terms of the surface forces F are of interest.

If p(x)=0 and I, =T, then the forces for a viscoelastic plate agree with the forces
for a corresponding elastic plate (i.e., for R = 0). We estimate H in terms of F for an
arbitrary function p. To do this, H (¢) is estimated first in terms of the function J (f) equal
to

J{t)y= S(Eu2 + 2e12% + g2 dx
5

Then J(f) is estimated in terms of F. We formulate the appropriate theorem.

Theorem 4.1. 1f the assumptions of Theorem 3.1 are satisfied, the plate is stable for
Bi<<Pr(1 —|r 2! where

pi=0+vU+InDU=yMhU =i |F|

If the assumptions of Theorem 3.2 are satisfied, then the plate is stable for B, <<PA (1 —|ry |)
R

Proof. To obtain the first estimate we substitute (2.7) for the stress tensor component
into H(t). We obtain

E

P2 £ R
=

[(1 —v)S(su (= Ryey+ 2o (f — R) e+ “1)

on (I — R)em)dz + v \ (61 + 1) (I — R)(en1 + £12) d:]

Do

Similarly we have

He2(t)= § (on -+ on)¥dz = § (611 + o) l_

1fv:(l——R)(su+w”)+

..E_ (I—R)(e,.,-i—vsu)] dz=( E §(an+ 6a) (] — R) (en + ex) 42

1— 2 1—w)

Hence and from (4.1) it follows that

1) — ¥ Hew =2 4.2
H3 (1) e () 1_+_vQ (4.2)
Q= S[Gn(l— Ryéy + 2012 (J — R)ez+ 3 (I — R)em)d=r
b
The left side of (4.2) has the following expression as lower bound:
PP e 1—vp
H 1+_v”’>1+vH {4.3)
The quantity Q in (4.2) is estimated as follows:
Q1< § (Gt + 20t + omem) 02 |+ @4
D

t

|§ar §r e+ @@+ o) o s () + 200 () e () +
0 D

1
sn @) cn () dz|<HOT O+ HO{ne. 07 @< +1nDHEW Oh
0

J () = supycicr I (1)
The necessary estimate results from (4.2)—(4.4)
@—vVHO<SEW+|InDIJ@) (4.5)

We will now |[J (| 4in terms of F. In conformity with the loading conditions on I, the
following boundary conditions hold:
+ Oy €08 (1, 7;) + Oyp €OS (R, 24) = Fy {4.6)
O3 €OS (n, ;) -~ Oyy COS (R, 23) = Fy
We multiply the first of equations (2.9) by u,, the second by s, and we add and integrate
over the domain D. Taking account of the boundary conditions (1.1), (4.6) and Green's formula,
we obtain
S(6n€u+25128n+ Surp)dr = oy, oy = S(F1u1+quz)d3‘ 4.7
D T,
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where ds is the arc element of T.
Replacing the stress tensor components in (4.7) by (2.7), we obtain

E(1— vyt S(eu(f ~ R)(ex + vea) + 2 (1 —v)enu(l — R)ey + en{l — R)(ea+ vru)jdr =m
B
It hence follows that the representation
Jo2= (1 — v) J2-- w2, T () = (1 — v%) E~toy - (1 ~ v) &y + veg (4.8)

holds.,
We here assumed

1o = (i + el as
PR

oy = K(Eu BRey 4 203 Repy + enRlen)dz, Oty == X(En -+ ega) R {8y + roa) dz
b b
We will estimate the individual components on the right side of (4.8). The function a, on
the right side of (4.8} is estimated thus

k3
taai=|{ar (reetp@ v+ o en® s + 20 e +
2 D
t
on (t) em (3)] dz l <fneoe (eh o+ 2,0+ 01 O+
0 D

t

28y (0) + ey (V] dz S T O it 0 T ()0
o
Analogously, for «, the following estimate holds:

¢ E
{ ol <Sn(¢, r)dtglau(t)+sn(i}l feu(t) +em(t)fde < /i () er(t.t) Iy (v dv
o D 8

We now introduce the number A,>0 by using the equation
Mr=inf, o ((h+ 26 + o / § oot + oty as (%9
D r
Here the functions v and v, satisfy the boundary conditions (1.1} and we set 2 = v;,;--
vy, i From the definition of A, it follows that

(o +umds <3203 (4.10)
ry

It hence follows that the component a; on the right side of (4.8) satisfies the inequality
e -
fal <} F 1‘ S(“f*{-ux’) ds} <UFIT @A
r\
[Fp= S(Fg+ Fatyds

T
It follows from {4.8) and estimates set up for the quantities ao; that

TR < (1 —~ v [ER T F LT () er & D [(A=v) T (T (1) + /1 () Io(T)]dT (4.11)
L]

Moreover, on the basis of the Cauchy inequality and (4.8) we have
(= J OO+ ()T (D)< T () T (1) (4.12)

Taking account of (4.12), inequality (4.11) takes the form
3

1# < To(d) S P T g (TY AT + (L — ) (EA) | FLE() (4.13)
[}

Furthermore, it is clear that

t
Lo {neon@a<iiOrin (4.14)
g
76 (B = supgceact Fo (D)
Hence, and from {2.2) it follows that
A2 DNITo OFE <A —v)EMF]|T0] (4.1%)

But by virtue of the definition (4.8) of the function J, the inequality TR (1 ~—w
iJ (@i holds. This means that taking (4.15) into account
J(H<IIOI< A+ FIEMNT —~|rn D (4.16)
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The following relationship results from the estimates (4.5) and (4.16)

HO<B=0+v0+]1nhll—vi(—]nl*|F|
Comparing this ineguality with the assertions of Theorems 3.1 and 3.2, we conclude that
Theorem 4.1 holds.

5. Certain remarks. 1°. We present a foundation for the positivity of the numbers
% A, Ay introduced above. The positivity of X follows from the fact that }; is the minimum
eigenvalue of the boundary value problem AAuw — Mu= 0 with boundary conditions (1.2) (A is
the Laplace operator), because of the Rayleigh inequality (/10/, p.167).

We note for the basis of the inequality A>>0 that {(/9/, p.84)

( S ut id’)% e § (02 02y +uty)de (5.1
D D

Moreover (/9/, p.63)

S"?id‘t e S (wly - uly)ds,  i=1.2 6.2)
D

The constants ¢;>0,¢,>0 in (5.1) and (5.2) depend only on the domain D. It follows
from (5.1), {5.2) and the Minkowski inegquality that

ho<( (utyaz)+ ( Sufzdz)"“ Saite { @+ 2, + i =a+0) £)
b / D g

The existence of i>0 is thereby established taking (3.7) into account.
We finally turn to the parameter 3, defined by relationship (4.9). For any §>0 we let
D (8 denote the set of points of D that are removed by not more than & from T. We have
(/9/ .73) .
P 'L% S vidz 48 S (vfll-{»viz)dxl
A

S vids ey
T D) Do

This means that a constant ¢, which depends solely on I, exists such that
Sviuidsg c.S 0,40, oy, bz, Lj=12 (5.8)
I B

Furthermore, by virtue of the XKorn inequality a constant ¢ >0 exists independent of v
such that (/11, p.45)

(Ig v, dx)x“,’ +<§ v 2y }d;)’fz< c,(§ ‘5;‘”&:)‘/‘

Hence, squaring both sides and comparing the result with inequality (5.4) we conclude
that

S ;0,85 < cqc? S e“eijd.t
r D

This means that the ineguality A,>>0 is established because of (4.9).

20. The stability conditiong established in Theorems 3.1, 3.2, 4.1 retain their form even
for other plate support methods. It is sufficient just to replace therein, the parameters A
and A, which have been defined by (3.7) and (4.9), by new values corresponding to the method
of supgort under consideration.

3. When using the Euler approach to elastic plate stability, that plate shape and
loading method are ordinarily assumed for which the stresses within the plate are constant
{see /7,12/, say). Under this assumption the stability conditions are simplified and have the
following form. Let i; —3; denote the minimal eigenvalues of the boundary value problems

Adu+ AgAu = 0, AAu+ Au,yy = 0, AAu+ 2yt = 0
with homogeneous boundary conditions corresponding to the support mode.

Theorem 5.1. Let the stresses within the plate be constant and let the assumptions of
Theorem 3.1 (Theorem 3.2) be satisfied. Then if o =0y, 633=0 the plate is stable for
foul <z g (for jon|<z (), if op=0,=0 the plate is stable for |oy|<z () (for [e,]<
2z (A, if 6, =0y,=0 the plate is stable for |op|<z (M) (for |on|<z (A)), where 2y (A) =
BARL (4 — fry ), and g (A) = BAR (4 — | ro ).

For instance, we consider an elastic rectangular plate of length a and width b compressed
uniformly in all directions by a force of intensity p, hinge-supported along the outline. Then
Oy == Oy == —plh, 033 = 0. The parameter Ay= n?(a2-- t-2). This means that the plate is stable for
p < P (et -+ b7 by virtue of Theorem 5.1, which agrees with the known result (/13/, p.462).

4°, From these theorems, certain stability conditions can be cbtained as a limiting case
for viscoelastic rods presented in /3/. For a rectangular plate of length a and width b, |z, <
bt a, let constant compressive forces of intensity p be applied to the edges |z |=a/2,
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The edges |[z,|=b/2 are stress free. We assume that v=0 and p=p(z). Then oy = —plh,
O3y = 0y =0, and the plate deformation occurs along a cylindrical surface and is characterized
by the bending of an arbitrary beam-strip parallel to the 0z, axis. If the deflection u is
sought in the form u=u(, z;), then in conformity with (2.11) we obtain an equation underlying
the investigation in /3/

Bl — R) uylin+ Py = ¢

The cylindrical stiffness P here agrees with the bending stiffness of a rod of rect-
angular cross section of unit width.

6. Stability in a finite time interval. By analogy with /1—3/, we call the
plate stable in an interval (0, T] if |u(4,2)|<4,0<t< T, where i is the given critical
value of the deflection. The time T, when the deflection first reaches the magnitude u 1is
called critical.

Let p(z)=0, and let p, denote the difference between the times of plate fabrication and
load application (i.e., p, is the age of the plate material at the time of load application)

We investigage the influence of p; on the magnitude of the critical time T, by solving
(2.11) numerically for a rectangular plate of length a=2 m, width b =6 m, and thickness

h=02m, fabricated from alumina portland cement with the following parameters /14/:

ke =—E L@ —oxp (=t 0], 9 (1) =4+ Ayz,

E = 2.0-10¢ MPa , 4, = 0.238.10*MPa~L, 4, = 1.85.10~ MPa~! day,
v = 0.333, v = 0.04 gay !

Constant compressive forces of strength p = 7.5-10* Pa are applied
to the endfaces |z, | = ¢/2. The endfaces |z, | = b/2 are force-free. A trans-
verse distributed load ¢ = ¢ cosaz/b, g0 = 833.33. Pa is applied to the
upper face of the plate. The dependence of the critical time T,
on the maximal achievable value of the deflection i for different
values of p, is represented in the figure where the quantity w.
equal to the ratio between & and the maximum value of the elastic
deflection at the time of external load application, is plotted
along the abscissa axis, and the guantity T, measured in days,
is plotted along the ordinate axis. Curve l corresponds to
po=10 days, curve 2 to p, = 20 days, and curve 3 to p, =40 days.

The results of the computations show that as p, grows the critical time 7T, increases,
where the dependence of T, on the age of magnified as i increases.
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