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ON THE STABILITY OF INHOM3GENEOUSLY AGEING VISCOELASTIC PLATES* 

A.D. DROZDCV and V.B. KOLMANOVSKII 

A method of investigationisproposedandconditionsare setup for the stability 
ofviscoelasticinhomogeneouslyageingplatesof arbitrary shape with a 
common creep kernel. The form of the stability conditions is found as a 
function of the surface forces. The stability problem is examined 
numerically in a finite time interval. The paper touches on the investiga- 
tions in /l-3/. (See the bibliographyofresearch on the stability of 
homogeneous vfscoelastic systems in /l-5/, for example.) 

1. Formulation of the problem. We consider a viscoelastic inhomogeneously ageing 
plate of constant thickness h. We introduce a Cartesian Oxlx,z, coordinate system whose Oz, 
axis is perpendicular to the middle plane while the Ox,;r, plane agrees with the middle plane 
in the undeformed state. The ;$a; isieset of points {z = (z,, q) E D x (-h/2 Q zg <h/2)}, 
where D is the domain in the II . The domain D has a piecewise-smooth boundary 
r =aD. 

At the time t = 0 a stationary external load consisting of a distributed transverse load 
of i'ntensity -q(x) applied to the face x8 = h/2, and the surface forces F (2) = (F, (x), F.2 (5), 
O), applied to the part of the plate edge rl X [--h/2, h/2l,I'l C r, is applied to the undeformed 
plate. The growth of a plate element x with respect to the plate element .r = 0 is p(x),where 

the function p(z) is piecewise continuous and bounded. The displacement vector in the plane 
of the plate is denoted by (~",u,~), and the displacement (deflection) of points of the middle 
plane in the direction of the 02, axis is denoted by u. The values of the vector (%O,h") 
for points of the middle plane are denoted by (ur, y). There are no displacements in the 
plane of theplate on part of the plate edges ra X I--h/2, h/21, rz = r \ rI 

IL,* (5) = 0, 5 E ra, i = 1, 2 (1.1) 
The plate edge is clamped with respect to deflection, i.e., when the following Kirchhoff 
hypotheses are satisfied: 

u (z) = 0, u,~ (x) = 0, z E r (1.2) 

Here R is the unit vector of the external normal to the curve r in the plane of the plate 
and denoted by f,* = aflax,. 

Definition. The plate is called stable if for any e>O there is a 6 = 6 (e)> 0 such 

that from the inequality 14(x) I<6 there results the estimate 1 u (t, I) 1 <E, t > 0, 5 CD. 

2. Governing equations. Let co== (U,,O), e" = (E~J'). i, j = 1, 2, 3 denote the stress and 

strain tensors at the time t>O. According to the model of inhomogeneously ageing bodies, 

the tensor components a" and e" are connected by the relationships 

Eij’ = ~ (I + K) [ (1 + y, Uip - VGijUl*‘] (2.1) 

Here E is the constant elastically-instantaneous strain modulus, v is the constant 
Poisson's ratio, summation is over identical subscripts, bij is the Kronecker delta, I is the 
unit operator, K is the creep operator, R is the relaxation operator (k(t,r) is the creep 

kernel, and r (6 4 is the relaxation kernel) 

It is assumed that the functions k(t, t), r(t, z) are weakly singular, the Kirchhoff 

hypotheses are satisfied /6/, the elongations and shears are small compared with unity, and 

the squares of the rotations are small compared with the elongations and shears. Then the 
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strain tensor components Eij', i, j = 1, 2, have the form 

&*j' = Eij - ZJU,ij (2.2) 

Here &ii are the strain tensor components in the middle plane. Moreover, it is assumed that 
a function rr (t,z) exists such that for any ZE D 

,r1,=sup,Sr1(t,r)ds<1 (2.4) 
0 

The stresses uiso,i = 1,2,3 can be neglected in (2.1) in the generalized plane state of 
stress. Hence, and from (2.1) it follows that 

UllO= E(i - Va)-l(I- R)(e,r" + ve**0), (2.5) 

Use" = E (1 + v)-1 (I - Z?) else 

I-~*“ z E (1 - Y%)--l (I - R) (vet + es2”) 

Let oil and M,, denote the average forces and moments in the plate per unit area of 
cross-section perpendicular to the middle plane 

--h/l -hll 

It is clear that eIl(t,z) and ui(t,x) are the values of the strain eilo and the displace- 
ment uiO averaged over the plate thickness. The averaged quantities are functions of the 
variables t and r, on which the explicit dependenceissometimes either not indicated or else 
indicated only for one of them. 

Substituting (2.2), (2.5) for sij', UQ' into the relationships (2.61, we obtain 

a r1 = E (1 -v*)-l (Z - R) (%I + VEZZ) (2.7) 
u r2 = E (1 + v)-’ (I - R) elz 

a II = E (1 -vY (1 -R) (VEX1 + E22) 

M,, = -E/z2 112 (1 -vr)l-' (I -R)(u,11 + vu,**) (2.5) 

M,, = -Eh2 112 (1 + v)l-1 (I -R) u,~~ 

Mg2 = -Ehz 112 (1 - vq- (I -I?) (V&l1 + u.& 

Usting /7/, we write the plate equilibrium equations in the bent state in the form 

%l.1+ %.I - 0. %%1+ %Y*t = 0 (2.9) 

Mll,l+ MB,, -Qua = 0, Mu.,+ MS,, -asa - 0 (2.10) 

UZSJ + Urn.2 + 0 + (UI~~J).I + (Uus,a),r + (UMJ),, + (Uaas,&=O 

To eliminate the forces Ular US3 from (2.10) , we differentiate the first equation in 
(2.10) with respect to z,, the second with respect to q, and add to the third equation. 
Substituting their expressions (2.8) in place of the moments Mi1 in the result, we arrive at 
the governing equation for the displacement u 0, 4 

~(~--)(~,ll+~~,,)l,ll+2(~--)~(~--)~,ltl,lP+ (2.11) 
I(1 - 4 (YU,II,+ u,~~)l.~: = q//8 + h/S h~,1),1 + 
((JIZU,Z),I + ((JUU,I).S + (~~zu,~).zl~ B- EhY[12 (I - +)I 

Here p is the cylindrical stiffness of the plate and the stresses ul, are determined by 
(2.7). 

3. General stability conditions. We will derive the stability conditions by 
considering the functions ulj as given. We will estimate the displacement u as a function of 
the force Uij by using the notation 41 2 = (41)'. 

It follows from (1.2) that 

u = 0, u,r = 0, IL,2 = 0, x E r (3.1) 
We multiply (2.11) by u(t,z) and integrate over the domain D. Taking account of the 

Green's formula C/8/, p.69) and the boundary conditions (3.1), we obtain 

s 
[u,llv--R)(U,ll+ ~~.22)+2(~-~)~,12(z-R)U,l~+ (3.2) 

u 
U,B (I- R)(vu,u + u.z&d~= 

$@dx-+~ CJlA& + 2% IU, 9, 1-t u&) dz 
D 
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hold 

We introduce the functions 

foS (4 = S ($1 + I&)” dx, 
D 

fia (t) = 1 u2 dx 
D 

If4 (t)- $ (M + haa + aaa')dr 
D 

Using Green's formula and the boundary conditions (3.1), we conclude that for any Y 

fP W - 1 (ut, + 242 + &I dx - 1 b.n + u, n)‘dx = 

(1 -:I ,s cutn + 24, + utr.) dx “+ v 5 @,u -I- u.a)‘dx 
D 

We now represent (3.2) in the form 

fa(t)~~~~dx+(1--r)S(.,IIRu,u+2u,~~Au,,+ 
D 

u,nRs,,)d3:+ v 

5 

(~.ll+~,~)R(~,n+u,g)dx- 

+ j (Al& + Zw+u,, + c&,)d~= II+ (1 -v)Zs + vZa + I, 

It is clear that 

IZll< II P II fl (G II P IY = jr 5 P (4 & 

D 

Furthermore, using the Cauchy inequality, we have 

Ilnl<~rl(f,r)dr~~,u,u(f,r)u,r~(~~x),+2,".m(ilx) x 
0 

u,n(r,x),+,u.r2(t.x)U,~~(T,x)/)dxgf(t)STl(t,~)f(~)dS. 
0 

Similarly 

,r,,sSl(t)S~~(t,~)i(l., dt 

0 

Like (3.4) we have 

Ir,(;%(u1i+ 2011~ + ut,*)‘l~ (u”, + u;*) dx < + H(t) fo (t) 

Hence, and from (3.3) it follows that 

(3.3) 

(3.4) 

(3.5) 

r(t)<Ilrl,h(t)+f(t)Sr~(t.~)f(r)dr ++W)fo(t) 
0 

(3.6) 

Let &and li denote the greatest positive numbers for which the inequalities 

ff (t) < h,-Y (th fo 0) < A-T (t) 

for all functions u (x)f 0 satisfying the boundary conditions (3.1). 
The existence of such & and h is proved in Sect.5. 
Because of (3.7), the following inequality results from estimate (3.6): 

(1 -h I H II a-‘IV II f(t) II < I r, I II f W II + 4” II q II 
II H II = sup'>OH W, II f 0) II = SUPo<7s3 f (7) 

We now assume that 
II H II < w-‘ (1 - I PI I) 

(3.7) 

(3.8) 

(3.9) 
On the basis of (3.8) and (3.9) we have ljf(t)II <ccl 11 q II. Here and henceforth ci > 0 are 

certain constants. Because of (3.7) and the known results (/9/, p.84, inequality (8.411, we 

have I u 0, 4 I < CI II f (t) II. 
Therefore, we have 

Theorem 3 .l. Let the assumptions formulated in Sect.1 andtheestimates (2.31, (2.4), 
(3.9) be satisfied. Then the plate is stable. 

Using the method to prove Theorem 3.1, other stability conditions can be obtained as in 
/3/i for instance, the following theorem holds: 

Theorem 3.2. We assume that the relaxation kernel r satisfies inequality (2.31, where 

Ir,I<cQ. Furthermore, let there be a function r. (t,z), 1 r. I< 1 such that uniformly in t Y T 
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limT, s suP,,D(r(t+P(I),-c+P(s))--r,(t,r)Idt= 0 
T 

Then the plate is stable if II H I) CBfi-' (1 - I ro I). 

4. Specific stability conditions. The general stability conditions set up in 
Theorem 3.1 and 3.2 depend on the stresses in the plate by means of the 
stability conditions formulated directly in terms of the surface forces 

If p(z)=0 and l?r =P, then the forces for a viscoelastic plate 
for a corresponding elastic plate (i.e., for R = 0). We estimate H in 
arbitrary function p. To do this, H(t) is estimated first in terms of 
to 

J2(t)= s(sJ + 2s12* + s&)dx 
D 

function H. In addition, 
F are of interest. 
agree with the forces 
terms of F for an 
the function J(t) equal 

Then J(t) is estimated in terms of F. We formulate the appropriate theorem. 

Theorem 4.1. If the assumptions of Theorem 3.1 are satisfied, the plate is stable for 
fli < bh(1 - I r, I)h-' where 

Br = (1 + v) (1 + I r1 I) [U- vJJ.3 (1 - Ir1I)P IF I. 

If the assumptions of Theorem 3.2 are satisfied, then the plate is stable for &< pA((1 - 1 r, I) 

h-1. 
Proof. To obtain the first estimate we substitute (2.7) for the stress tensor component 

into H(t). We obtain 

%(I- R)en)dz + v 
% 

(an+an)(r--)(ell+en)dz 
3 

Similarly we have 

S?(l) = 
5 
(all+ep)tdz= ~(.nt.r)i~(l-R)(.n+v~a)+ 

& (~--)(~+"%I) 1 (~n+~af(I-R)(eu~En)d~ 

Hence and from (4.1) it follows that 

H'(f)- +V H,"(t) = + 

Q= S[M--R) ~~~+~s~z(~-R)PIz+~~(~--R)E~I~~. 
D 

The left side of (4.2) has the following expression as lower bound: 

H'- ,& H,QGH' 

The quantity Q in (4.2) is estimated as follows: 

IQI</ SC ~GI+~wB+w~) dt + 
D 

t 

Is s 
dr r (2 + P (IL 'c i-p (4) Ia,Wu 6) +&z(t) en(r) + 

0 D 

(4.2) 

(4.3) 

(4.4) 

The necessary estimate results from (4.2)-(4.4) 

(i - v)H U) d S (1 + I r1 I) u J (0 II (4.5) 
We will now IIJ(t)II in terms of F. In conformity with the loading conditions on Pr the 

following boundary conditions hold: 

. 011 cos (n, q)+ olr eos(n, L,) = F, (4.3) 
a,, COS (n, 21) + (rm co9 (n,z,) = F, 

We multiply the first of equations (2.9) by ulr the second by or, and we add and integrate 
over the domain D. Taking account of the boundary conditions (l-l), (4.6) and Green's formula, 
we obtain 

S (RIEII +~JI@IZ+ %eddz = a~, a, = (FIUI + F,uz) ds 
D 

S (4.7) 
r, 
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where ds is the arc element of r. 
Replacing the stress tensor components in (4.7) by (2.71, we obtain 

S(1- v'f-1 
d 
I%(~ - R)(el, I-YE& + Z(t -v)ell(l- R)Q + elp(J - R)(e,a + v~idj ds = ‘L, 

It h8nCe follows that the representation 

(4.8) 102 = (1 - v) P + vJ,“. Jo2 (t) = (1 - v*) E-*a, -+ (1 - v) a, + val 
holds. 

We here assumed 

It'(t) = s . P& + & ds 
al = SD bat %I + %%p fadb)d~ I aa = S (PI1 i ena) Rh i ed dJz 17 D 

We will estimate the individual components on the right side of (4.8). The function ai on 
the right side of (4.8) is e+nated thus 

Analogously, for cg the 

t f 
I~i~fr~tt,f)dtSIe,l(tf-tEIPftfI I .%I (7) f a et I da! < Jl (Q s 0 (6 7) JI w dx 

0 D 0 

We now introduce the number Z,>O by using the equation 

(4.9) 

Here the functions vI and V, satisfy the boundary conditions (1.1) and we set 261 = ui*j + 

9, 4. From the definition of h, it follows that 

S (UP+ !d)ds Q qJ*(t) 
l-t 

(4.10) 

It hence follows that the component a, on the right side of (4.8) satisfies the inequality 

] CQ 14 1 F 1 [ 1 (rQ + ~2) ds 1”’ c i F ! I ct) %’ 

r* 

/PI*- S(w+&*)ds 

I-. 

It follows from (4.8) and estimates set up for the quantities ai that 

ri(r)<(i -+)[E?.$li F\ 1 (Q+ ~~~(t,W-vf I (01W -l-vJ,(Q~d+)ld~ 
0 

Moreover, on the basis of the Cauchy inequality and (4.8) we haV8 

(1 - Y) J (4 J (0 + VJ, (t) I, (a B Jo (0 J, 0) 

Taking account of (4.12), inequality (4.11) takes the form 

L 

J,,*(t)< lo(~)~r,(f,~)~u(~)d~-t(l-v*)(Eh~~)-’~Fl~(~) 
0 

Furthermore, it is clear that 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Hence, and from (2.2) it follows that 

(1 - I 71 I) I/ Jo (0 /p < (1 - ~3vhr~ I F I H J w /r (4.15) 

But by virtue of the definition (4.8) of the function J, the inequality II J” (t) \/a 3 (1 _- VI 
il J (t) 11% holds. This means that taking (4.15) into account 

J (1) & I/ .I (t) /I s; (1 + v) I F I [EL, (1 - I % I)]‘-’ (4.16) 
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The following relationship results from the estimates (4.5) and (4.16) 

H (t) < 81 = (i Jr V)(i + jr, I)[(~ - v) ho u - I r1lW’ I F I 
Comparing this inequality with the assertions of Theorems 3.1 and 3.2, we conclude that 

Theorem 4.1 holds. 

5. Certain remarks. lo. We present a foundation for the positivity of the numbers 

h,b,,h, introduced above. The positivity of & follows from the fact that li, is the minimUm 
eigenvalue of the boundary value problem &AS -h,a=O with boundary conditions (1.2) (A is 
the Laplace operator), because of the Rayleigh inequality (/lo/, p.167). 

We note for the basis of the inequality h>O that t/Q/, p.84) 

Moreover (/9/, p.63) 

~u~idr<g~ (~~~,i_u~~)dz, i=1,2 (5.2) 

The Constants c,>O,c,>O in (5.1) and (5.2) depend only on the domain D. It follows 
from (5.1)‘ (5.2) and the Minkowski inequality that 

The existence of h)O is thereby established taking 13.7) into account. 
We finally turn to the parameter h, defined by relationship (4.9). For any 6>0 we let 

D (6) denote the set of points of D that are removed by not more than 6 from T. We have 
c/Q/, p-73) 

r” L ” D?b, D’ia, 
.1 

This means that a constant cI, which depends solely on JY, exists such that 

SUCb 

that 

Furthermore, by virtue of the Kom inequality a Constant E?>O exists independent of Vi 
that i/11, p.45) 

Hence, squaring both sides and comparing the result with inequality (5.4) we conclude 

This means that the inequality &>O is established because of (4.9). 
20. The stabilityconditionsestablished in Theorems 3.1, 3.2, 4.1 retain their form even 

for other plate support methods. It is sufficient just to replace therein, the parameters L 
and & which have been defined by (3.7) and (4.9), by new values corresponding to the method 
of sup ort under consideration. 

39. When using the Euler approach to elastic plate stability, that plate shape and 
loading method are ordinarily assumed for which the stresses within the plate are constant 
(see /7,12/, say). Under this assumption the stability conditions are simplified and have the 
following form. Let &-?+ denote the minimal eigenvalues of the boundary value problems 

AAar+ &Au = 0, AAs+ X,+, = 0, AAS+ 2&u,,. = 0 

with homogeneous boundary conditions corresponding to the support mode. 

Theorem 5.1. Let the stresses within the plate be constant and let the assumptions of 
Theorem 3.1 (Theorem 3.2) be satisfied. Then if (fll = %r %l = 0 the plate is stable for 
I on I 4 il (1,) (for I aI1 I < z2 (h,)), if alI; = a, = 0 the plate is stable for I ol,I<rl(h,) (for 1 aL1 I< 
zI @,I), if (rll = o** = 0 the plate is stable for I ox? I < ZL (hd (for I q1 I <x, (h,)), where $1 (L) = 
bhh-1 (1 - / rl I), and z* (h) = Bhh-1 (1 - 1 )*o I). 

For instance, we consider an elastic rectangular plate of Length a and width b compressed 
uniformly in all directions by a force of intensity p, 
011 = 0** = -p/h. alp == 0. 

hinge-supported along the outline. Then 
The parameter h, = ~~(a-?-+ b-1). 

p < n*fi (a-'+ 6-21 
This means that the plate is stable for 

by virtue of Theorem 5.1, 
40. 

which agrees with the known result t/13/, p.462). 
From these theorems, certain stability conditions can be obtained as a limiting case 

for viscoelastic rods presented in /3/. 
b, b*iza, 

For a rectangular plate of length a and width b,/%,fq 

let constant compressive forces of intensity p be applied to the edges i+}-&. 
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The edges \=,I= b/2 are stress free. We assume that v=O and p = p(z,). Then bll = -p/h, 
%, = %a - 0, and the plate deformation occurs along a cylindrical surface and is characterized 
by the bending of an arbitrary beam-strip parallel to the OZ, axis. If the deflection u is 
sought in the form u= u(t,q), then in conformity with (2.11) we obtain an equation underlying 
the investigation in /3/ 

B I(1 - R) u,**l,,l+ P".Il = P 

The cylindrical stiffness B here agrees with the bending stiffness of a rod of rect- 
angular cross section of unit width. 

6. Stability in a finite time interval. BY analogy with /l-3/, we call the 
plate stable in an interval IO, T] if / v(t,z)I <a, O< t< T, where ri is the given critical 
value of the deflection. The time T, when the deflection first reaches the magnitude II is 
called critical. 

Let p (z)~ 0, and let p0 denote the difference between the times of plate fabrication and 
load application (i.e., p. is the age of the plate material at the time of load application) 

We investigage the influence of p0 on the magnitude of the critical time T, by solving 
(2.11) numerically for a rectangular plate of length la=2m, width b= 6 m, and thickness 
h = 0.2 m, fabricated from alumina portland cement with the following parameters /14/: 

k(t,t)=-_E&[cp(~)(l--exp(--Y(t-?)))l, 'P(r)=Aot&7, 

E = 2.0.104 ma, A, = 0.233.10-4MPa-l, A, = 1.85.10* MPa-1 day, 

v = 0.333, y = 0.04 day-'. 

Constant compressive forces of strength p=i.5.104Paareapplied 

bfl!r -- -, 

/' 

totheendfaces ( zII = ai2.Theendfaces IzJ,( = b/2 are force-free. Atrans- 
II 3 I versedistributedload q= 9acoa f%lb, PO= 833.33 Pais appliedtot&? 

I 

/ 

upper face of the plate. The dependence of the critical time T, 
on the maximal achievable value of the deflection II for different 

J!,;__-__- -. 
values of p0 is represented in the figure where the quantity w. 
equal to the ratio between ti and the maximum value of the elastic 
deflection at the time of external load application, is plotted 

L. 
L',--- -~ _’ __ ~-7 along the abscissa axis, and the quantity T,, measured in days, 

is plotted along the ordinate axis. Curve 1 corresponds to 
pO=iO days, cume 2 to p0=20 days, and curve 3 to pO= 40 days. 

The results of the computations show that as pa grows the critical time T, increases, 
where the dependence of To on the age of magnified as U increases. 
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